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Significance of the free volume for metastability, spinodals, and the glassy state:
An exact calculation in polymers
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A lattice model of semiflexible linear chair(svith equilibrium polydispersity containing free volume is
solved exactly on a Husimi cactus. A metastable ligWhtl ) is discovered to exist only at low temperatures
and is distincttand may be disjointfrom the supercooled liquidSCL) that exists only at high temperatures.
The free volume plays a significant role in that the spinodals of the ML and SCL merge and then disappear as
the free volume is reduced. The Kauzmann temperafyweccurs in the ML without any singularity. At
Tuc>Tk, the ML specific heat has a peak. For infinitely long polymers, the peak height diverges and the free
volume vanishes afyc, resulting in a continuous liquid-liquid transition. Contrary to the conventional
wisdom, bothTx and Ty, occur in the ML and not in the SCL.
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The thermodynamic and kinetic aspects of the liquid-glass In the mode-couplingdMC) theory (7], the ergodicity is
transition afT ¢ provide an interesting duality, which presents lost completely, and structural arrest occurs at a temperature
one of the most challenging problems in theoretical physicd,,., which lies well above the customary glass transition
[1-11]. It is fair to say that there yet exists no completely temperaturel 5. Consequently, the correlation time and the
satisfying theory of the glass transition even though somgiscosity diverge due to the caging effect. The diverging vis-
major progress has been made recepfly11. The most cosity can be related to the vanishing free volu@@),13],
successful theory that attempts to desciibéh aspects with  \yhich might suggest thahe MC transition is the same as
some respectable success is based on the *free-volumghe giass transitionThis does not seem to be the consensus
model of Cohen and TurnbulB]. The concept of free vol- 5 hregent. Thus, it is not clear if the free volume is crucial

ume has been an intriguing one that pervades physics but iy 'tho \c transition or the GT, and this needs to be clari-
consequences and relevance are not well undergtdidat fied '

least in our opinion. In this theory, the glass transiti@T) . , :
occurs when the free volume becomes sufficiently small to Itis quite remarkable that a supercooled liq(BCL) usu

impede the mobility of the moleculg43]. The time depen- aIIytd_oei TjOt end l')n ad_spmtl)_(lj(al. H(t)wever, some tf_lwds that
dence of the free-volume redistribution, determined by theeontain hydrogen bonding, like water, aré excep iphe).

energy barriers encountered during redistribution, provides & N€ir unusual behavior is thought to be related to their nega-
kinetic view of the transition, and must be properly ac-live expansion coefficient. However, the implications of the
counted for. This approach is yet to be completed satisfacto>CL Spinodal for the GT are not well understood, and need
rily. The thermodynamic view treats the ideal glass transitiorfO be investigated. One must also investigate why SCL spin-
as a continuous transition in the metastable state, especialfals do not seem to occur in systems without hydrogen
in polymers[1,2,4a)]. In polymers, one must make a distinc- bonding.
tion between the interaction strengths of the end group and In classical statistical mechanics, the kinetic energy con-
the middle group with the free volume, in addition to their tribution to the partition function can be factored out to leave
mutual interaction[14]. We have used these interactions behind the configurational partition function. The entropy
[12(b)] to explain some unexpected experimental results ogontribution Syg(T) from kinetic energy is independent of
the variation ofT with molecular weigh{15], by studying  the configuration; hence, it is the same for a CR and a SCL.
a completely flexible polymer lattice model. There was nolt merely plays the role of an additive constant so that we
crystal (CR) phase and, hence, metastability. Thus, the GTeed to consider only the configurational entropy for study-
itself was not investigated. We will now introduce semiflex- ing metastability. The latter appears in the configurational
ibility following [11] to study the GT, the metastability and partition function and cannot beegativeif the correspond-
spinodals, and the role of free volume and entropy. ing state is to occur in natufd7]. One usually approximates

It is commonly believed that the lack of free volume andit by Se(T)=Ssci(T) —Scr(T), the excess SCL entropy
the entropy crisis are at least two important factors that conover that of the CR. This requires assuming tiak(T)
trol the glassy state, and that they are interrelated. However; Ske(T), which is not generally true. The SCL specific heat
the entropy crisis can exist even in an incompressible systeff@sci(T) is much higher than the CR specific héagg(T)
[11] (no free volumg Furthermore, thermodynamics re- [1,2]. Hence, the drop irBsc(T) is much stronger than in
quires the entropy but not the volume or the free volume tdScr(T) as T falls, so that the “extrapolatedSgc (T) be-
drop as the temperature is reduced. Thus, there is seriog®mes less thaScr(T) at low enough temperatures below
doubt about the significance of the free volume for the glass] g, which according to Kauzmarji] presents a catastrophe
which is the central issue to be investigated. that has to be avoided by some transition. However, as
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shown recently for an incompressible and infinitely longcell volume; we henceforth sety=1. For ny—®, we re-
polymer chain systerfil1], one can hav&,,(T)<0 without trieve the Hamilton walk limit studied earli¢.1].
violating thermodynamics. Indeed, there are real systems like The general model is capable of describing vaporization,
“He for which the entropy of the equilibrium liquiL) can  melting, and sublimation. In addition, it also describes the
be less than its crystal entroBer(T). The signature of the  |iquid-liquid transition. TheP-T plane calculation in the
Kauzmann paradox is taken thdfe] not as a negativex,  grand canonical ensemble is carried out at constant chemical
but as theentropy crisiscaused by the configurational en- potentials. Depending on how we cross the vaporization
tropy becoming negativEL7]. In any lattice model, like the  cyrve in theP-T plane, we can obtain supercooled or super-
one considered in Ref11] and hereSce(T)=0; hence, the heated liquid or vapor. This should not be a surprise. The
entropy is only configurational. The entrofsc(T) re-  same will happen across other transition curves. We need to
mains positive, but the entrop§, (T) of the metastable make the following two important observations.
liquid (ML) vanishes and becomes negative below some (1) One of the configurations ifiy represents the vacuum
nonzero lower temperaturg. The latter is impossible as jn which all sites are covered by voids, and it contributes 1 to
noted above and signals the Kauzmann catastrpjijeThe Zy. The remaining terms are all non-negative. Here,
entropy crisis occurs in the ML and not in the SCL, neithermyst be non-negative in equilibrium. Moreover, it must be a
of which exhibits any spinoddll1]. The observed continu-  maximum in the equilibrium state. However, there is no rea-
ous liquid-liquid (L-L) transition atTyc between the SCL  son to expecP to be non-negative in metastable or super-
and the ML is conjectured to be the thermodynamic transizooled or superheated states. Indeed, it is easy to find such
tion underlying the dynamic MC transition. states with negative pressures. For example, if the vacuum is
Do these results survive in the presence of free volumeRot allowed for some metastable states, tAgmeed not to
How does finite polymer size affect these conclusions? Argye |arger than 1. In that case, the pressure could be negative.
there spinodals associated with the SCL or the ML? What iyegpite this, the specific heat or other thermodynamic stabil-
their significance? What is the physics behind the SCL-MLjty requirement must be obeyed for these nonequilibrium
transition? Will it disappear in the presence of free volumeZtateq17]. Consequently, we never obtain unstable states in
What distinguishedc andTyc? Does the free volume van- an exact calculation like the one we carry out in this work.
ish at a nonzero temperature? We attempt to answer theggscause of this, the termination of any state in the interior of
questions below. _ o ~the parameter space will correspond to its spinodal limit. As
Model. One usually considers a square lattice, in whichygyal, the signature of the spinodal will be a diverging sus-
there are Rl lattice bonds provided we neglect surface cor-ceptibility like the specific heat. The termination of a state at
rections. LetNp, Ng, Ny, Ny, Ny, B=Np—p, andp de-  the boundary of the parameter space gives a Nernst point,
note the total number of pairs of parallel bonds, gaucheyhere some susceptibilities vanigtg]. Nernst points should
bonds, hairpin turns, middle groug!), voids(v), chemical  not be confused with spinodals.
bonds, and polymers, respectively. H&g=N—N, is the For the equilibrium state? must diverge as the free vol-
number of monomeriFor the Hamilton walk limit studied ume vanishes. However, this need not be the case for non-
in Ref. [11], p=1.) There is a three-site bending penaity equilibrium states. Indeed, we will see tHawill invariably
>0 for each of the two possible gauct® bonds with re-  remain finite in such states even when the free volume van-
spect to a polymer bond. There is no penalty for a trans bondshes.
There is a four-site interaction energy>0 for each pair of (2) The current polydisperse model has an extra actiity
neighboring parallel bonds. The third energy of interaction ispecause of which we have a fluctuating degree of polymer-
g" for gach hairpin turn. The configurational interaction en-jzation (DP) compared to the monodisperse model contain-
ergy is given by E=eNgte'Nyte"Np=e(NgtaN,  jng polymers of a fixed DP. LeM denote the DP. Setting
+bN,)), where a=¢'/e and b=¢"/e. We introducew = .  M=2,42
= exp(—Be), B=1/T, w' =w?, and w’=wP, and replace Nm=(M _2)9 fn Eq. (1), we see th.at”"_ 7 H .repre-
T/e by T, so that the temperature is measured in the units ofents the activity for a polymer chain of DW. Keepingze
e. We introduce the middle group activity,, and the end- f|x¢d will aIIow' us to use the current mode_l to draw quanti-
point activityH. Let the exchange energies between differentative conclusions about the corresponding monodisperse
pairs of species, middle group, end grd, and voids, be model containing chains of DM .
eve, Emv, and eg,, and the corresponding Boltzmann  Recursive lattice solutioriThe above model, which can-
weights bewye, wy,, andwg,, wherew;; = exp(—Bs;;),i  hot be solved exactly on a square lattice, is solved exactly on
#j,1,j=v, M, or E. LetN;; denote the nearest-neighbor con- a square Husimi cactus; see Rgfl] for details. The exact-
tacts between dissimilar specieandj. The grand canonical ness of the solution ensures that thermodynamics is never
partition function is violated. The solution forms an approximate theory on a
square lattice. The cactus levels are indexed sequentially as
we move outward away from the centen€0) of the cac-
tus, so that the four vertices in a square are inderéar the
bottom vertexm+ 1 for the two intermediate vertices, and
The sum is over distinct values &y, Ng, Ny, Ny, N; m+ 2 for the top vertex. There are three additional states of
andp for a given value oN. The corresponding free energy a vertex of the cactus in addition to the four previous states
[18] gives the pressurBug; here,v, represents the lattice (a=I, O, R, andL) defined in Ref[11]. Two of the new
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FIG. 1. The equation of state for the EL or SCAY, ML (A), FIG. 2. The equation of state for finite polymers with free vol-

and CR (O); use the left hand axis. We consider=0.1,b  ume for the CR(O) and EL or SCL @&). We considera
=0, ¢y, =0.07, uy=1. The specific heat, (®) for the EL and =0.66,c,=0.3,Cye=0.01,¢¢,=0.1, uy=2, ug=—6, and b

SCL; use the right hand axis. The inset shows the free volumg 0- On the w scale we showTy=0.372,Tyc=0.166,Tg

density in the CRO) and EL or SCL & ). On thew scale we show  — 0-124. The inset shows the entropy per site for the(Cirand
Tw=0.391,T},c=0.273, andT,=0.124. EL and SCL &)

states at a vertex correspond to having an end point attacheihgular manner &fy,c. The free volume is identically zero
to a polymer bond thati) lies above the vertex, an@) lies  in the CR and ML(not shown. Since the entropss per unit
below the vertex. The remaining new state corresponds tgolume is the derivativedP/JT) , at fixed chemical poten-
having a void. It is convenient to introduce normalized enerdials, we conclude that the entropy in the ML vanishes at
giescij=e;j /e, so thatw;;=w"i, and normalized chemical Ty (<Tmc), the Kauzmann temperature, and becomes nega-
potentialsug,wy Via H=w™#E and ny=w™#M, tive below it. Thus, the ML is a physical state only at and
We introduce seven partial partition functio,(a)  aboveTy, even thouglC, is positive everywhere.
corresponding to the seven states at each cactus level, in- Finite polymers(H>0). The singularity in the equation
dexed by m. We then construct the recursion relations of state aflyc disappearsFig. 2) for nonzeroH. This makes
among these partial partition functions at successivéhe EL or SCL and the ML the same phasa)( which
levels that can be written symbolically aZ.,(«) continues all the way down td,, where it terminates be-
=1, {Zni1(a)} {Zmso(a")}], whered, is a cubic poly- cause of theentropy crisis We also show the CRO) equa-
nomial [quadratic inZ,,.(a’) and linear inZ,,,(a")]. tion of state. However, the free volume still falls rapidly in
The nature of the fix-pointFP) solution determines the bulk the vicinity of Ty to an extremely small value and goes to
behavior. To study the FP solution, we introduce seven ratioan even smaller and nonzero valudat The free volume in
Xm(@)=Z () [Zn(L) +Z(R) ], Xm(L) +Xn(R)=1. We the CR also remains extremely small. The entropy for the EL
consider the one-cycle and two-cycle FP solutions describingr SCL (A) and CR(O) is shown in the inset.
the disordered and crystal phases in the mddg]. In the In Fig. 3, we show the vapor phasé\ (A,[0), the CR
one-cycle solution, the ratios are the same at each successiy¢ ,®,0), and the liquid phases EL, ML, and SCIl(
level, given byx(«). In the two-cycle solution, they alter- solid curve,¥) for uy=0.25, 0.38, and 0.4; the specific
nate betweem(«) andx’(«) from one level to another. The heatC, for the ML and SCL is shown in the inset. Fpr
FP solutions are obtained numerically, and we present the-0.25, the SCL B) terminates into its spinodal beloW,,
results below. The complete recursion relations are givetthe temperature below which the vapor phage),( whose
elsewherd20]. The calculations are done at fixed:, wy, pressure is slightly larger than zero, becomes stable. The CR
andc;; as a function ofT. phase € ), which starts at absolute zero, has negative pres-
Infinite polymerg(H=0). We show theP-T equation of sure and ends in a spinodal. There ihiad disordered phase
state for the EL or SCLA), ML (A) and CR(O) in Fig. 1; (ML, B), which originates at absolute zero and exists only
use the left axis. The equilibrium phase has the maximummearT=0, and has the lowest possiljleegative pressure. It
pressure, so that the EL and CR are the stable phases abdgalisjoined from the SCL and is unphysical as it has negative
and below the melting temperatufg, . The EL turns into a entropy over its entire range. In addition, its specific heat
SCL belowT), and disappears a8y, below which the ML (@) (see the ins¢talso does not diverge where it ends; thus,
becomes the only possible metastable state. The specific hatt end is not a spinodal. The specific he@®)(of the SCL,
C, (@) at constant chemical potentials for the EL or ML on the other hand, diverges at its spinodal. The ML phase
(use the right axisshows a divergence a,c due to a becomes physically relevant only where it has non-negative
continuous transition. In the inset, we show the free-volumesntropy (solid curve, V). For u,,=0.38, the ML and SL
density ¢, as a function off for the EL or SCL (A) and the (solid curve are still disjoint, and each terminates in a spin-
CR(O). We are immediately struck by its disappearance in adal, whereC , (dashed curve in the ingediverges. What is
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FIG. 3. Evolution of the mode-coupling transition with increas-
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peak at the lower temperature remains intact with its height
saturated. It is clear that this peak corresponds to the
smoothed out singularity afy for finite polymers. This
singularity is not due to any singular behavior present in the
EL or SCL, but due to that in the ML, which originates at
low temperatures. Because of its low-temperature origin, the
ML is relatively more ordered than the SCL, which shows in
the small values ok(O) andx(l) in the ML. In all the cases

we have studied, we have not seen negative expansion coef-
ficients.

To summarize, we have shown that the free volume has
no anomalous behavior when the entropy crisis occurs. Sur-
prisingly, its behavior near the MC transition is singular, sug-
gesting that its rapid drop is more closely connected with the
dynamic slowing down and the anomalous viscosity associ-
ated with the dynamic MC transition. This is another support
for identifying Tyc with a thermodynamic transition point

ing uv. We show the equation of state for the vapor phaseynderlying the dynamic MC transition in polymers. The tran-

(A,A,0), the CR (©,®,0), and various branches of the liquid
(M, solid curve,¥) for uy=0.25, 0.38, and 0.4, respectively. The
rest of the parameters are the same as in Fig. 2. The vaporizati

sition occurs in the ML, and not in the SCL. It is sharp only
for infinite polymers, but retains its signature even for finite

%ut long polymers. The ML has very little free volume com-

temperature of the liquid-vapor transition is also shown. In the insebared to the SCL. It originates at low temperatures and exists

we show the specific heat of the liquid state fof=0.25 (@),
0.38(dashed ling and 0.4(solid line).

interesting is thatC, for the ML shows a peak below its

only over a finite temperature range, disjoined from the SCL,
if there is too much free volume corresponding to small val-
ues ofuy, . The observed spinodals in the ML and SCL, even
without any hydrogen bonding in the model, and without

spinodal. Asuy, increases, the spinodals of the SCL and ML negative expansion coefficient, suggest that their presence is

move toward each othdrcontinuous curves However, the

more common than is usually thought of. Increasing in-

C, peak in the ML does not move much, although its heightcreases the temperature range of the ML, which eventually

diminishes and eventually saturates witfy . Eventually, the
spinodals of the ML and SCL meet atcaitical point for
some critical value ofuy . Above this critical value, the
criticality between the ML and SCL disappea® ). We no
longer see any divergence @, (solid curve, but theC,

joins with the SCL to give rise to a SCL-ML extension all the
way down to the Kauzmann temperature. The location of the
specific heat peak associated with the underlying MC transi-
tion does not move much throughout this. It is the high
monomer density that destroys the spinodals.
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